Department of Mathematics
University of Toronto
e-mail: dmoskovich@[remove-me]gmail.com
I am a postdoc working on quantum topology of knots and 3-manifolds, although most of what I’m actually doing is fairly classical. I’m currently working with Dror Bar-Natan at the University of Toronto. I blog on mathematics that interests me at Low Dimensional Topology.
(Joint with A.J. Kricker). Alg. Geom. Topol. 9 (2009), 1341-1398.
arXiv:math.GT/0805.2307
We consider knots equipped with a representation of their knot groups onto a dihedral group D_{2n} (where n is odd). To each such knot there corresponds a closed 3-manifold, the (irregular) dihedral branched covering space, with the branching set over the knot forming a link in it. We report a variety of results relating to the problem of passing from the initial data of a D_{2n}-coloured knot to a surgery presentation of the corresponding branched covering space and covering link. In particular, we describe effective algorithms for constructing such presentations. A by-product of these investigations is a proof of the conjecture that two D_{2n}-coloured knots are related by a sequence of surgeries along unit-framed unknots in the kernel of the representation if and only if they have the same coloured untying invariant (a Z_{n}-valued algebraic invariant of D_{2n}-coloured knots).
(Joint with S.K. Hansen). Acta Math. Vietnam. 33(3) (2008), 291-320.
As the first stage of his proposed geometric quantization of the SU(2) WZW model, T. Yoshida introduced coordinates on a Prym variety which covers the moduli space of semi-stable rank 2 holomorphic vector bundles with trivial determinant over a Riemann surface. We explain Yoshida’s coordinates, and reprove their key properties using elementary combinatorial arguments.
(Joint with T. Ohtsuki). J. Combin. Theory Ser. A. 114 (2007), 919-931.
arXiv:math.GT/0511602
We prove the vanishing of the space of 3-loop Jacobi diagrams of odd degree. This implies that no three-loop finite-type invariant can distinguish between a knot and its inverse.
Kobe J. Math. 23 (2006), 29-50.
arXiv:math.QA/0507351
We propose a simple new combinatorial model to study spaces of acyclic Jacobi diagrams, in which they are identified with algebras of words modulo operations. This provides a starting point for a word-problem type combinatorial investigation of such spaces, and provides fresh insights on known results.
Alg. Geom. Topol. 6 (2006), 673-697.
arXiv:math.GT/0506541
For p=3 and for p=5 we prove that there are exactly p equivalence classes of p-coloured knots modulo 1-framed and -1-framed surgeries along unknots in the kernel of a p-colouring. These equivalence classes are represented by connect-sums of n left-hand (p,2)-torus knots with a given colouring when n=1,2,…,p. This gives a 3-colour and a 5-colour analogue of the surgery presentation of a knot.
Far East J. Math Sci 14(2) (2004), 165-183.
arXiv:math.GT/0211223
(This was a reading project under the supervision of Dror Bar-Natan)
The Gauss self-linking integral of an unframed knot is not a knot invariant, but it can be turned into an invariant by adding a correction term which requires adding extra structure to the knot. We collect the different definitions/theorems/proofs concerning this correction term, most of which are well-known (at least as folklore) and put everything together in an accessible format. We then show simply and elegantly how these approaches coincide.
arXiv:1101.0532
A G-coloured knot is a knot together with a representation of its knot group onto G. Two G-coloured knots are said to be rho-equivalent if they are related by surgery around unit framed unknots in the kernels of their colourings. The induced local move is a G-coloured analogue of the crossing change. For certain families of metabelian groups G, we classify G-coloured knots up to rho-equivalence. Our method involves passing to a problem about G-coloured analogues of Seifert matrices.
Using our surgery presentation of a D_{2n}-coloured knot, we construct a non-commutative version of the rational Kontsevich invariant for D_{2n}-coloured knots as a dihedrally-equivariant invariant of their irregular dihedral covering spaces. As part of the construction we prove a non-commutative analogue of the Kirby theorem for untying links of D_{2n}-coloured knots.
By Georges Racinet
. Translation from French.
A translation of Georges Racinet’s landmark paper
relating shuffle relations of multiple zeta functions to Drinfel’d’s associator. My French is very bad so there may be mistakes, and corrections are most welcome!
By Arnaud Beauville
. Translation from French.
A translation of Arnaud Beauville’s paper
quoted by T. Yoshida. Again, corrections are most welcome!
MAT137
Calculus!
University of Toronto, Autumn-Spring 2010-2011.
MAT1900
Dehn Surgery
University of Toronto, Summer 2011.
MAT137
Calculus!
University of Toronto, Autumn-Spring 2011-2012.
MAT332
Introduction to Graph Theory
University of Toronto, Autumn 2011.
MAT224
Linear Algebra II
University of Toronto, Mississauga, Spring 2012.
joint with K. Ueda. At RIMS, 2005.
We worked together on understanding Yoshida’s proposed abelianization of the WZW model.
joint with P.A. Gastesi and J.J. Zuniga. At TIFR, 2008.
I gave a talk on Wajnryb’s MCG presentation, and 4 talks introducing knot thoery.
by Vladimir Turaev.
Notes taken jointly with Eri Hatakenaka and Tadayuki Watanabe.
Framing and the Self-Linking Integral
KOOK Seminar, Osaka City Univesity, Algebra and Geometry of Knots and Manifolds I, August 23-26 2003.
A Combinatorial Calculus for $\mathcal{A}$-Spaces
East Asian School of Knots, Links, and Related Topics, Seoul, February 16-20 2004.
Symmetrizing Vassiliev Invariants of Links
International Workshop for Graduate Students about Knot Theory and Related Topics, Osaka City University, July 5-7 2004.
A Surgery Presentation for Irregular Branched Dihedral Covering Spaces of Knots
III Joint Meeting Japan-Mexico in Topology and its Applications, Oaxaca, December 6-10 2004.
Presenting p-Coloured Knots by Links in the Kernel of the Colouring of a (p,2)-Torus Knot
2005 International General Topology Symposium in Zhangzhou, May 25-28 2005.
Coloured Untying of Knots
Osaka University, Low Dimensional Topology Seminar, Osaka University, July 17 2005.
A Surgery Presentation for 3-Coloured Knots and for 5-Coloured Knots
KOOK Seminar, Algebra and Geometry of Knots and Manifolds III, Kobe, August 29-September 1 2005.
A Kontsevich Integral for Fox Coloured Knots
NZ-Japan Knot Theory conference. University of Auckland, January 4-7 2006.
Quantum Topology for Coloured Knots
Geometry and Topology Seminar, University of Copenhagen, November 6 2006.
Vanishing of the Space of 3-Loop Jacobi Diagrams of Odd Degree
Workshop- Geometry, Dynamics, and Complex Analysis, Schaeffersgarden, Gentofte, September 24-25 2006.
A Non-Commutative Analogue of the Rational Kontsevich Integral
Topology Seminar, Aarhus University, January 30 2007.
Finite Type Invariants of Knots
Departmental Colloquium, Technical University of Denmark, February 28 2007.
Yoshida’s Abelianization Explained
International Conference on Quantum Topology, Institute of Mathematics, VAST, Hanoi, August 6-10 2007.
Two Surgery Presentations for Dihedral Covering Spaces
Friday Seminar on Knot Theory, Osaka City University, Osaka, Novermber 30 2007.
Surgery Presentation for Dihedral Covering Links
The Fourth East Asian School of Knots and Related Topics, January 21-24 2008.
Towards surgery presentations of metabelian coloured knots and their covering links
Friday Seminar on Knot Theory, Osaka City University, Osaka, May 30 2008.
Surgery Presentations for Coloured Knots and for their Covering Links
Geometry and Topology Seminar, Indian Institute of Technology Bombay , Mumbai, India, August 20 2008.
Surgery Presentations for Coloured Knots and for their Covering Links
Departmental Colloquium, Tata Institute for Fundamental Research, Mumbai, India, August 21 2008.
Surgery Equivalence Classes of Knots Coloured by Metabelian Groups
The Mathematics of Knots: Theory and Application, Heidelberg, Germany, December 15-19, 2008.
An Alexander polynomial for coloured knots
The 5th East Asian School of Knots and Related Topics, Gyeongju, Korea, January 11–16 2009.
Equivalence relations generated by surgeries which preserve metabelian information
Friday Seminar on Knot Theory, Osaka City University, Osaka, Japan, April 24 2009.
Surgery presentations for metabelian-group-coloured knots
RIMS Postdoc Seminar, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, June 6 2009.
Surgery presentations for knots coloured by metabelian groups
Workshop on Topology and Geometry— Quandles and Related Topics, Hiroshima University, Hiroshima, Japan, July 11-12 2009.
Surgery and bordism for coloured knots
University of California, Berkeley, October 21 2009; University of Nevada, Reno, October 28 2009; Indiana University, November 3 2009; University of Toronto, November 6 2009; Brandeis University, November 10 2009; Columbia University, November 13 2009.
Symmetric surgery presentations for symmetric manifolds
The 6th East Asian School of Knots and Related Topics, Chern Institute of Mathematics, Nankai University, Tianjin, China, January 25-28 2010.
Untying coloured knots
Geometry and Topology Seminar, KAIST, Daejeon, South Korea, March 9 2010.
Untying coloured knots
RIMS Postdoc Seminar, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, April 8 2010.
Untying coloured knots
MS Seminar, Institute for the Physics and Mathematic of the Universe, Kashiwa, Japan, May 11 2010.
First steps in coloured knot theory
Topology Seminar, University of Victoria, Victoria, Canada, January 28 2011.
First steps in coloured knot theory
Special session on “Topological, Geometric, and Quantum Invariants of 3-Manifolds”, Spring Eastern Sectional Meeting, Worcester, Massachusetts, USA, April 10 2011.
My favourite books
Useful LaTeX resources
Proofs of the Kirby theorem
Miscellaneous mathematical stuff
La pleine lune est une période d'opportunité positive si vous l'utilisez correctement. Cela peut augmenter votre énergie positive ou inversement, cela peut causer des ravages sur vos émotions.
Puisque la pleine lune déverse une énorme quantité d’énergie, vous devez être dans un état d’esprit calme pour recevoir un effet positif. Rappelez-vous que tout ce qui se passe dans votre corps, votre esprit et votre esprit seront amplifiés.
Si vous êtes en colère, vous vous sentirez plus en colère ou si vous êtes heureux, vous vous sentirez plus heureux. Pendant la pleine lune, l'océan se gonfle et les salles d'urgence accueillent plus de patients. L’énergie est très puissante, il est donc important de la diriger avec une intention positive.
L'énergie folle ainsi que l'énergie affectueuse seront intensifiées. Sachant que cela représente une énorme opportunité pour votre croissance émotionnelle et spirituelle.
Voici cinq astuces de Feng Shui Your Life pour utiliser l'énergie de la pleine lune (deux jours avant et deux jours après) de la manière la plus fortuite:
Par exemple, vous pourriez écrire une liste de gratitude ou une note de remerciement à l’Univers pour tout ce que vous avez. Vous pouvez vous regarder dans le miroir et vous dire de belles choses. Vous pourriez faire une promenade et remarquer toute la beauté autour de vous. Imaginez que vos pensées positives soient parsemées de paillettes de pleine lune qui les font croître de façon exponentielle.
Une de mes méditations préférées pour débusquer l'énergie négative et envoyer des bénédictions aux autres s'appelle «Twin Hearts». Lisez à ce sujet et écoutez une version gratuite ici. La pleine lune est un bon moment pour rendre service et faire des actes de gentillesse.
Pour calculer le calendrier lunaire et les prochaines dates des pleines lunes et nouvelles lunes, il vous faudra révisez vos mathématiques et vos tables de multiplication sur ce site : https://www.tables-de-multiplication.com/